

Plastiques industriels

Fiche technique

Table des matières

Acrylique	4
Acétal (Delrin®)	5
Polycarbonate	6
Nylon	7
PVC rigide	8
Teflon® (PTFE)	9
UHMW	10
Plastique phénolique	11
Polyéthylène (HDPE)	12
Nylatron	13
Caoutchouc	14
Tableau de conversion	15-17

Table des matières (suite)

Barres rondes	18–19
Plaques	20-21
Feuilles	22

Acrylique

L'acrylique est un plastique rigide, transparent et léger, reconnu pour sa clarté optique, sa bonne résistance aux intempéries et sa facilité de fabrication. Il est souvent utilisé comme alternative au verre dans les secteurs de la construction, de l'affichage et de l'aménagement.

Recommandé pour

• **Vitrages :** fenêtres, écrans, panneaux de séparation

• Affichage: enseignes, signalisation, caissons lumineux

• Mobilier: présentoirs, protections, ameublement design

• Construction: dômes, toitures, garde-corps intérieurs

Propriétés mécaniques Valeur typique

Résistance à la traction ~8 000 à 11 000 psi

Dureté (Shore D) ∼90

Résistance aux chocs Moyenne

Résistance chimique Moyenne à bonne

Température maximale $\sim +80 \, ^{\circ}\text{C} \, (176 \, ^{\circ}\text{F})$

Offert en version extrudée ou coulée, avec options transparentes, colorées, diffusantes, antistatiques ou résistantes aux chocs.

Acétal (Delrin®)

L'acétal est un plastique technique semi-cristallin très rigide, avec une excellente stabilité dimensionnelle et une bonne résistance à l'usure. Il est particulièrement utilisé pour les pièces mécaniques de précision. Le nom commercial Delrin® est l'un des plus connus.

Recommandé pour

- Mécanique / industriel : bagues, glissières, rouleaux
- Alimentaire : pièces non absorbantes, surfaces propres
- Électromécanique : composants mobiles, entretoises

Propriétés mécaniques Valeur typique

Résistance à la traction ~9 000 à 11 000 psi

Dureté (Shore D) \sim 90–100

Résistance aux chocsBonne

Résistance chimiqueBonne

Température maximale $\sim +105$ °C (221 °F)

Disponible en version homopolymère (Delrin®) ou copolymère, avec options renforcées, stabilisées UV ou alimentaires.

Polycarbonate

Le polycarbonate est un plastique transparent, résistant aux chocs et à la chaleur. Il combine rigidité, légèreté et sécurité, ce qui en fait une alternative au verre dans les environnements à haut impact.

Recommandé pour

- Vitrages de sécurité : pare-balles, fenêtres anti-vandalisme
- Construction : toits translucides, puits de lumière
- Automobile : phares, pare-brise de véhicules récréatifs
- Industrie : protecteurs de machines, capots, écrans

Propriétés mécaniques Valeur typique

Résistance à la traction ~9 000 psi

Dureté (Shore D) ∼75

Résistance aux chocs Exceptionnelle

Résistance chimique Moyenne

Température maximale $\sim +115$ °C (239 °F)

Aussi offert en version anti-UV, antistatique, pare-balles (Lexan®), ou alimentaire.

Nylon

Le nylon est un plastique technique polyvalent, apprécié pour sa résistance mécanique, sa rigidité et sa capacité à supporter les charges en mouvement. Il est utilisé en remplacement de pièces métalliques grâce à sa légèreté, sa résistance à l'usure et sa bonne stabilité dimensionnelle.

Recommandé pour

- Pièces mécaniques : engrenages, poulies, roues, paliers
- Manutention: glissières, guides, entretoises
- Automobile / machinerie : supports, pièces tournantes
- Industriel: rouleaux, cales, composants usinés

Propriétés mécaniques Valeur typique

Résistance à la traction ~10 000 psi

Dureté (Shore D)∼110Résistance aux chocsÉlevéeRésistance chimiqueBonne

Température maximale $\sim +100 \, ^{\circ}\text{C} \, (212 \, ^{\circ}\text{F})$

Variantes disponibles : Nylon 6, 6/6, moulé, extrudé, chargé de MoS2 (lubrifié), ou stabilisé pour contact alimentaire.

PVC rigide

Le PVC rigide est un plastique durable, économique et facile à usiner. Il offre une bonne résistance chimique et aux intempéries, tout en conservant une structure stable. Il est utilisé dans les secteurs de la construction, de l'électricité, de la plomberie et de l'affichage.

Recommandé pour

• Électricité : gaines, armoires, boîtiers de protection

• Affichage: panneaux intérieurs/extérieurs, présentoirs

• **Industriel**: bacs, revêtements, applications chimiques

Propriétés mécaniques Valeur typique

Résistance à la traction ~7 000 psi

Dureté (Shore D) ∼112

Résistance aux chocs Moyenne

Résistance chimique Excellente

Température maximale $\sim +60 \, ^{\circ}\text{C} \, (140 \, ^{\circ}\text{F})$

Offert en version gris standard, transparent, ignifuge (classe 94V-0), chimique (Corzan®), ou alimentaire.

Teflon® (PTFE)

Le Teflon® est un plastique technique reconnu pour sa résistance aux produits chimiques, sa très faible friction, et sa grande stabilité thermique. Inerte, antiadhésif et isolant, il est utilisé dans les environnements exigeants.

Recommandé pour

- Électrique / électronique : isolants, connecteurs, gaines
- Alimentaire : surfaces antiadhésives, paliers
- Industriel: composantes exposées à des acides ou solvants

Propriétés mécaniques Valeur typique

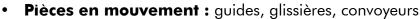
Résistance à la traction ~1 500 à 4 000 psi

Dureté (Shore D) ∼55–60

Résistance aux chocs Moyenne

Résistance chimique Exceptionnelle

Température maximale $\sim +260 \, ^{\circ}\text{C} \, (500 \, ^{\circ}\text{F})$


Existe avec charges de verre, carbone, bronze ou graphite pour améliorer la résistance à l'usure et aux déformations.

UHMW

Le UHMW (polyéthylène ultra-haute masse molaire) est un plastique technique reconnu pour sa résistance exceptionnelle à l'usure, sa faible friction, sa légèreté et sa capacité à absorber les chocs. Il est utilisé dans les secteurs de la manutention, de l'alimentaire et de la transformation industrielle.

Recommandé pour

• Alimentaire : pièces en contact indirect, goulottes

• **Mécanique :** pièces anti-usure, coussinets

• Transport: composantes de remorques, rails, cales

Propriétés mécaniques Valeur typique

Résistance à la traction ~3 000 à 3 500 psi

Dureté (Shore D) $\sim 65-70$

Résistance aux chocs Très élevée

Résistance chimique Excellente

Température maximale $\sim +82 \, ^{\circ}\text{C} \, (180 \, ^{\circ}\text{F})$

Aussi disponible en grades alimentaires, haute température, noir antistatique, ou glissement élevé.

Plastique phénolique

Le plastique phénolique est un thermodurcissable très rigide, résistant à la chaleur, aux solvants et à l'usure. Il est souvent utilisé pour sa stabilité dimensionnelle et ses bonnes propriétés isolantes.

Recommandé pour

Electrique: plaques isolantes, supports, bornes

• **Mécanique :** gabarits, entretoises, bagues de frottement

• Industriel : composants usinés, supports de structure

• Outillage: plateaux, panneaux, pièces soumises à la chaleur

Propriétés mécaniques Valeur typique

Résistance à la traction ~7 000 à 12 000 psi

Dureté (Shore D) ~105−115

Résistance aux chocsMoyenne à bonne

Résistance chimique Bonne

Température maximale $\sim +150 \, ^{\circ}\text{C} \, (302 \, ^{\circ}\text{F})$

Disponible en grades C, CE, L, LE, G10, G11 selon les renforts (toile, papier ou fibre de verre).

Polyéthylène (HDPE)

Le polyéthylène haute densité (HDPE) est un plastique léger, robuste, économique et résistant à l'humidité et aux produits chimiques. Facile à usiner, il est utilisé dans l'alimentation, l'emballage et la construction.

Recommandé pour

Alimentaire : plans de travail, goulottes, pièces non contaminantes

Manutention: glissières, patins, séparateurs

Construction: bacs, réservoirs, panneaux protecteurs

• Industriel : entretoises, cales, pièces de machinerie légère

Propriétés mécaniques Valeur typique

Résistance à la traction ~4 000 psi

Dureté (Shore D) ∼60–65

Résistance aux chocs Élevée

Résistance chimique Excellente

Température maximale $\sim +80 \, ^{\circ}\text{C} \, (176 \, ^{\circ}\text{F})$

Disponible en grades extrudés ou moulés, standard ou alimentaires, noirs UV stabilisés, ou résistants aux produits chimiques.

Nylatron

Le nylatron est un nylon modifié avec des charges (généralement du bisulfure de molybdène – MoS₂) pour améliorer la résistance à l'usure, la rigidité et la stabilité dimensionnelle. Il est conçu pour les applications mécaniques intensives et les environnements exigeants.

Recommandé pour

Transmission de puissance : engrenages, roues dentées

• Usinage industriel: poulies, bagues, glissières

• Mécanique lourde : entretoises, rails, pièces mobiles

• Applications répétitives : mouvements continus ou à forte charge

Propriétés mécaniques Valeur typique

Résistance à la traction ~11 000 psi

Dureté (Shore D)~115Résistance aux chocsBonneRésistance chimiqueBonne

Température maximale $\sim +105$ °C (221 °F)

Nylon modifié, souvent chargé de MoS2 pour une meilleure résistance à l'usure et à la friction. Offert en plusieurs grades (NSF, GSM, etc.).

Caoutchouc

Le caoutchouc industriel (souvent du SBR ou de l'EPDM) est un matériau élastique utilisé pour ses propriétés d'étanchéité, d'absorption des chocs, d'adhérence et de résistance aux vibrations.

Recommandé pour

- Étanchéité : joints, rondelles, bandes, garnitures
- Antivibrations: supports, tapis, cales industrielles
- Protection: goulottes, doublures, revêtements
- Construction / mécanique : butées, silentblocs, compensateurs

Propriétés mécaniques Valeur typique

Résistance à la traction ~11 000 psi

Dureté (Shore D)~115Résistance aux chocsBonneRésistance chimiqueBonne

Température maximale $\sim +105$ °C (221 °F)

Plusieurs formats possibles : néoprène, nitrile (NBR), EPDM, silicone, Viton®, naturel (NR), selon la résistance requise.

Tableau de conversion

Fractions	Décimales	Millimètres
1/64	0.156	0.3969
1/32	0.313	0.7938
	0.394	1
3/63	0.469	1.1906
1/16	0.625	1.5875
5/64	0.781	1.9844
	0.787	2
3/32	0.938	2.3812
7/64	0.1094	2.7781
	0.1181	3
1/8	0.125	3.175
9/64	0.1406	3.5719
5/32	0.1563	3.9688
	0.1575	4
11/64	0.1719	4.3656
3/16	0.1875	4.7625
	0.1969	5
13/64	0.2031	5.1594
7/32	0.2188	0.5563
15/64	0.2344	5.9531
	0.2362	6
1/4	0.25	6.35
17/64	0.2656	6.7469
	0.2756	7
9/32	0.2813	7.1438
19/64	0.2969	7.5406
5/16	0.3125	7.9375
	0.315	8
21/64	0.3281	8.3344
11/32	0.3438	8.7313
	0.3543	9
23/64	0.3594	9.1281
3/8	0.3750	9.525
25/64	0.3906	9.9219
	0.3937	10
13/32	0.4063	10.3188

Tableau de conversion (suite)

Fractions	Décimales	Millimètres
27/64	0.4219	10.7156
	0.4331	11
7/16	0.4375	11.1125
29/64	0.4531	11.5094
15/32	0.4688	11.9063
	0.4724	12
31/64	0.4844	12.3031
1/2	0.5	12.7
	0.5118	13
33/64	0.5156	13.0969
17/32	0.5313	13.4938
35/64	0.5469	13.8906
	0.5512	14
9/16	0.5625	14.2875
37/64	0.5781	14.6844
	0.5906	15
19/32	0.5938	15.0813
39/64	0.6094	15.4781
5/8	0.6250	15.875
	0.6299	16
41/64	0.6406	16.2719
21/32	0.6563	16.6688
	0.6693	17
43/64	0.6719	17.0656
11/16	0.6875	17.4625
45/64	0.7031	17.8594
	0.7087	18
23/32	0.7188	18.2563
47/64	0.7344	18.6531
	0.7480	19
3/4	0.75	19.05
49/64	0.7656	19.4469
25/32	0.7813	19.8438
	0.7874	20
51/64	0.7969	20.2406
13/16	0.8125	20.6375
	0.8268	21

Tableau de conversion (suite)

Fractions	Décimales	Millimètres	
53/64	0.8281	21.0344	
27/32	0.8438	21.4313	
55/64	0.8594	21.8281	
	0.8661	22	
7/8	0.875	22.225	
57/64	0.8906	22.6219	
	0.9055	23	
29/32	0.9032	23.0188	
59/64	0.9219	23.4156	
15/16	0.9375	23.8125	
	0.9449	24	
61/64	0.9531	24.2094	
31/32	0.9688	24.6063	
	0.9843	25	
63/64	0.9844	25.0031	
1	1	25.4	

Barres rondes

UHMW et	polyéthylène	HDPE
---------	--------------	------

Dimension (po)	Dimension (mm)	Poids (lb/pi)
1/4	6.35	0.014
3/8	9.53	0.031
1/2	12.7	0.058
5/8	15.88	0.091
3/4	19.05	0.131
7/8	22.23	0.179
1	25.4	0.224
1 1/4	31.75	0.35
1 1/2	38.1	0.506
1 3/4	44.45	0.69
2	50.8	0.897
2 1/2	63.5	1.402
3	76.2	2.023
4	101.6	3.604
6	152.4	8.13

Acrylique, polycarbonate, nylon et nylatron

Dimension (po)	Dimension (mm)	Poids (lb/pi)	
1/4	6.35	0.017	
3/8	9.53	0.039	
1/2	12.7	0.069	
5/8	15.88	0.108	
3/4	19.05	0.155	
7/8	22.23	0.211	
1	25.4	0.27	
1 1/4	31.75	0.422	
1 1/2	38.1	0.61	
1 3/4	44.45	0.831	
2	50.8	1.081	
2 1/2	63.5	1.688	
3	76.2	2.436	
4	101.6	4.323	
6	152.4	9.727	

Barres rondes (suite)

Acétal, PVC rigide, phénolique et caoutchouc

Dimension (po)	Dimension (mm)	Poids (lb/pi)
1/4	6.35	0.02
3/8	9.53	0.045
1/2	12.7	0.08
5/8	15.88	0.125
3/4	19.05	0.18
7/8	22.23	0.245
1	25.4	0.314
1 1/4	31.75	0.491
1 1/2	38.1	0.707
1 3/4	44.45	0.963
2	50.8	1.257
2 1/2	63.5	1.963
3	76.2	2.827
4	101.6	5.027
6	152.4	11.314

Plaques

UHMW et po	olvéthy	/lène	HDPE
------------	---------	-------	------

Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)
1/4	3.17	0.139
3/16	4.76	0.208
1/4	6.35	0.272
3/8	9.52	0.408
1/2	12.7	0.544
5/8	15.88	0.68
3/4	19.05	0.816
1	25.4	1.088
1 1/4	31.75	1.36
1 1/2	38.1	1.632
2	50.8	2.176

Acrylique, polycarbonate, nylon et nylatron

Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)	
1/4	3.17	0.176	
3/16	4.76	0.265	
1/4	6.35	0.353	
3/8	9.52	0.53	
1/2	12.7	0.706	
5/8	15.88	0.883	
3/4	19.05	1.059	
1	25.4	1.412	
1 1/4	31.75	1.765	
1 1/2	38.1	2.118	
2	50.8	2.824	

Plaques (suite)

Acétal, PVC rigide, phénolique et caoutchouc

Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)
1/4	3.17	0.204
3/16	4.76	0.306
1/4	6.35	0.408
3/8	9.52	0.612
1/2	12.7	0.816
5/8	15.88	1.02
3/4	19.05	1.224
1	25.4	1.632
1 1/4	31.75	2.04
1 1/2	38.1	2.448
2	50.8	3.264

Feuilles

UHMW et polyéthylène HDPE

Jauges	Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)
10	0.01	0.254	0.013
15	0.015	0.381	0.02
20	0.02	0.508	0.027
30	0.03	0.762	0.039
62	1/16	1.587	0.07
94	3/32	2.381	0.106

Acrylique, polycarbonate, nylon et nylatron

Jauges	Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)	
10	0.01	0.254	0.014	
15	0.015	0.381	0.021	
20	0.02	0.508	0.028	
30	0.03	0.762	0.041	
62	1/16	1.587	0.088	
94	3/32	2.381	0.132	

Acétal, PVC rigide, phénolique et caoutchouc

Jauges	Épaisseur (po)	Épaisseur (mm)	Poids (lb/pi²)
10	0.01	0.254	0.016
15	0.015	0.381	0.024
20	0.02	0.508	0.033
30	0.03	0.762	0.049
62	1/16	1.587	0.102
94	3/32	2.381	0.153

